Robustness in Statistical Pattern Recognition

· Mathematics and Its Applications Boek 380 · Springer Science & Business Media
E-boek
302
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

This book is concerned with important problems of robust (stable) statistical pat tern recognition when hypothetical model assumptions about experimental data are violated (disturbed). Pattern recognition theory is the field of applied mathematics in which prin ciples and methods are constructed for classification and identification of objects, phenomena, processes, situations, and signals, i. e. , of objects that can be specified by a finite set of features, or properties characterizing the objects (Mathematical Encyclopedia (1984)). Two stages in development of the mathematical theory of pattern recognition may be observed. At the first stage, until the middle of the 1970s, pattern recogni tion theory was replenished mainly from adjacent mathematical disciplines: mathe matical statistics, functional analysis, discrete mathematics, and information theory. This development stage is characterized by successful solution of pattern recognition problems of different physical nature, but of the simplest form in the sense of used mathematical models. One of the main approaches to solve pattern recognition problems is the statisti cal approach, which uses stochastic models of feature variables. Under the statistical approach, the first stage of pattern recognition theory development is characterized by the assumption that the probability data model is known exactly or it is esti mated from a representative sample of large size with negligible estimation errors (Das Gupta, 1973, 1977), (Rey, 1978), (Vasiljev, 1983)).

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.