Connectivity Properties of Group Actions on Non-Positively Curved Spaces

·
· American Mathematical Soc.
5.0
1 review
Ebook
83
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Generalizing the Bieri-Neumann-Strebel-Renz Invariants, this Memoir presents the foundations of a theory of (not necessarily discrete) actions $\rho$ of a (suitable) group $G$ by isometries on a proper CAT(0) space $M$. The passage from groups $G$ to group actions $\rho$ implies the introduction of 'Sigma invariants' $\Sigmak(\rho)$ to replace the previous $\Sigmak(G)$ introduced by those authors. Their theory is now seen as a special case of what is studied here so that readers seeking a detailed treatment of their theory will find it included here as a special case. We define and study 'controlled $k$-connectedness $(CCk)$' of $\rho$, both over $M$ and over end points $e$ in the 'boundary at infinity' $\partial M$; $\Sigmak(\rho)$ is by definition the set of all $e$ over which the action is $(k-1)$-connected. A central theorem, the Boundary Criterion, says that $\Sigmak(\rho) = \partial M$ if and only if $\rho$ is $CC{k-1}$ over $M$.An Openness Theorem says that $CCk$ over $M$ is an open condition on the space of isometric actions $\rho$ of $G$ on $M$. Another Openness Theorem says that $\Sigmak(\rho)$ is an open subset of $\partial M$ with respect to the Tits metric topology. When $\rho(G)$ is a discrete group of isometries the property $CC{k-1}$ is equivalent to ker$(\rho)$ having the topological finiteness property type '$F_k$'. More generally, if the orbits of the action are discrete, $CC{k-1}$ is equivalent to the point-stabilizers having type $F_k$. In particular, for $k=2$ we are characterizing finite presentability of kernels and stabilizers. Examples discussed include: locally rigid actions, translation actions on vector spaces (especially those by metabelian groups

Ratings and reviews

5.0
1 review

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.