Riemannian Geometry: Edition 2

· Graduate Texts in Mathematics 171. књига · Springer Science & Business Media
Е-књига
405
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Important additions to this new edition include:

* A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise;

* An increased number of coordinate calculations of connection and curvature;

* General fomulas for curvature on Lie Groups and submersions;

* Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger;

* Several recent results about manifolds with positive curvature.

From reviews of the first edition:

"The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting

achievements in Riemannian geometry. It is one of the few comprehensive sources of this type."

- Bernd Wegner, Zentralblatt

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.