Riemannian Geometry: Edition 2

· Graduate Texts in Mathematics 171-кітап · Springer Science & Business Media
Электрондық кітап
405
бет
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject.

Important additions to this new edition include:

* A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise;

* An increased number of coordinate calculations of connection and curvature;

* General fomulas for curvature on Lie Groups and submersions;

* Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger;

* Several recent results about manifolds with positive curvature.

From reviews of the first edition:

"The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting

achievements in Riemannian geometry. It is one of the few comprehensive sources of this type."

- Bernd Wegner, Zentralblatt

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.