Ridge Functions

· Cambridge Tracts in Mathematics Livre 205 · Cambridge University Press
Ebook
218
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field.

Quelques mots sur l'auteur

Allan Pinkus has been in the Department of Mathematics at Technion since 1977, and became a full Professor in 1987. He is the author of three research monographs, one textbook, over 100 research articles, and he has edited six proceedings. His main research interests center around approximation theory. Pinkus is a member of various editorial boards and served for ten years as editor-in-chief of the Journal of Approximation Theory. He has held numerous visiting appointments, and has lectured extensively at international conferences.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.