Real Algebraic Geometry

· UNITEXT Libro 66 · Springer Science & Business Media
Libro electrónico
100
Páginas
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images.

At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century).

In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).

Acerca del autor

Vladimir Arnold is one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work.

His first mathematical work, which he did being a third-year student, was the solution of the 13th Hilbert problem about superpositions of continuous functions. His early work on KAM (Kolmogorov, Arnold, Moser) theory solved some of the outstanding problems of mechanics that grew out of fundamental questions raised by Poincare and Birkhoff based on the discovery of complex motions in celestial mechanics. In particular, the discovery of invariant tori, their dynamical implications, and attendant resonance phenomena is regarded today as one of the deepest and most significant achievements in the mathematical sciences.

Arnold has been the advisor to more than 60 PhD students, and is famous for his seminar which thrived on his ability to discover new and beautiful problems. He is known all over the world for his textbooks which include the classics Mathematical Methods of Classical Mechanics, and Ordinary Differential Equations, as well as the more recent Topological Methods m Hydrodynamics written together with Boris Khesin, and Lectures on Partial Differential Equations.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.