Ramified Integrals, Singularities and Lacunas

· Mathematics and Its Applications Книга 315 · Springer Science & Business Media
Электронная книга
294
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

This volume contains an introduction to the Picard--Lefschetz theory, which controls the ramification and qualitative behaviour of many important functions of PDEs and integral geometry, and its foundations in singularity theory. Solutions to many problems of these theories are treated. Subjects include the proof of multidimensional analogues of Newton's theorem on the nonintegrability of ovals; extension of the proofs for the theorems of Newton, Ivory, Arnold and Givental on potentials of algebraic surfaces. Also, it is discovered for which d and n the potentials of degree d hyperbolic surfaces in Rn are algebraic outside the surfaces; the equivalence of local regularity (the so-called sharpness), of fundamental solutions of hyperbolic PDEs and the topological Petrovskii--Atiyah--Bott--Gårding condition is proved, and the geometrical characterization of domains of sharpness close to simple singularities of wave fronts is considered; a `stratified' version of the Picard--Lefschetz formula is proved, and an algorithm enumerating topologically distinct Morsifications of real function singularities is given. This book will be valuable to those who are interested in integral transforms, operational calculus, algebraic geometry, PDEs, manifolds and cell complexes and potential theory.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.