Ramified Integrals, Singularities and Lacunas

· Mathematics and Its Applications 315 knyga · Springer Science & Business Media
El. knyga
294
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This volume contains an introduction to the Picard--Lefschetz theory, which controls the ramification and qualitative behaviour of many important functions of PDEs and integral geometry, and its foundations in singularity theory. Solutions to many problems of these theories are treated. Subjects include the proof of multidimensional analogues of Newton's theorem on the nonintegrability of ovals; extension of the proofs for the theorems of Newton, Ivory, Arnold and Givental on potentials of algebraic surfaces. Also, it is discovered for which d and n the potentials of degree d hyperbolic surfaces in Rn are algebraic outside the surfaces; the equivalence of local regularity (the so-called sharpness), of fundamental solutions of hyperbolic PDEs and the topological Petrovskii--Atiyah--Bott--Gårding condition is proved, and the geometrical characterization of domains of sharpness close to simple singularities of wave fronts is considered; a `stratified' version of the Picard--Lefschetz formula is proved, and an algorithm enumerating topologically distinct Morsifications of real function singularities is given. This book will be valuable to those who are interested in integral transforms, operational calculus, algebraic geometry, PDEs, manifolds and cell complexes and potential theory.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.