Ramified Integrals, Singularities and Lacunas

· Mathematics and Its Applications الكتاب 315 · Springer Science & Business Media
كتاب إلكتروني
294
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

This volume contains an introduction to the Picard--Lefschetz theory, which controls the ramification and qualitative behaviour of many important functions of PDEs and integral geometry, and its foundations in singularity theory. Solutions to many problems of these theories are treated. Subjects include the proof of multidimensional analogues of Newton's theorem on the nonintegrability of ovals; extension of the proofs for the theorems of Newton, Ivory, Arnold and Givental on potentials of algebraic surfaces. Also, it is discovered for which d and n the potentials of degree d hyperbolic surfaces in Rn are algebraic outside the surfaces; the equivalence of local regularity (the so-called sharpness), of fundamental solutions of hyperbolic PDEs and the topological Petrovskii--Atiyah--Bott--Gårding condition is proved, and the geometrical characterization of domains of sharpness close to simple singularities of wave fronts is considered; a `stratified' version of the Picard--Lefschetz formula is proved, and an algorithm enumerating topologically distinct Morsifications of real function singularities is given. This book will be valuable to those who are interested in integral transforms, operational calculus, algebraic geometry, PDEs, manifolds and cell complexes and potential theory.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.