Quasi-Uniform Spaces

·
· Routledge
Ebook
232
pagine
Idoneo
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Since quasi-uniform spaces were defined in 1948, a diverse and widely dispersed literatureconcerning them has emerged. In Quasi-Uniform Spaces, the authors present a comprehensivestudy of these structures, together with the theory of quasi-proximities. In additionto new results unavailable elsewhere, the volume unites fundamental materialheretofore scattered throughout the literature.Quasi-Uniform Spaces shows by example that these structures provide a natural approachto the study of point-set topology. It is the only source for many results related to completeness,and a primary source for the study of both transitive and quasi-metric spaces.Included are H. Junnila's analogue of Tamano's theorem, J. Kofner's result showing thatevery GO space is transitive, and R. Fox's example of a non-quasi-metrizable r-space. Inaddition to numerous interesting problems mentioned throughout the text , 22 formalresearch problems are featured. The book nurtures a radically different viewpoint oftopology , leading to new insights into purely topological problems.Since every topological space admits a quasi-uniformity, the study of quasi-uniformspaces can be seen as no less general than the study of topological spaces. For such study,Quasi-Uniform Spaces is a necessary, self-contained reference for both researchers andgraduate students of general topology . Information is made particularly accessible withthe inclusion of an extensive index and bibliography .

Informazioni sull'autore

Peter Fletcher, William F. Lindgren

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.