Quasi-Uniform Spaces

·
· Routledge
E-bog
232
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

Since quasi-uniform spaces were defined in 1948, a diverse and widely dispersed literatureconcerning them has emerged. In Quasi-Uniform Spaces, the authors present a comprehensivestudy of these structures, together with the theory of quasi-proximities. In additionto new results unavailable elsewhere, the volume unites fundamental materialheretofore scattered throughout the literature.Quasi-Uniform Spaces shows by example that these structures provide a natural approachto the study of point-set topology. It is the only source for many results related to completeness,and a primary source for the study of both transitive and quasi-metric spaces.Included are H. Junnila's analogue of Tamano's theorem, J. Kofner's result showing thatevery GO space is transitive, and R. Fox's example of a non-quasi-metrizable r-space. Inaddition to numerous interesting problems mentioned throughout the text , 22 formalresearch problems are featured. The book nurtures a radically different viewpoint oftopology , leading to new insights into purely topological problems.Since every topological space admits a quasi-uniformity, the study of quasi-uniformspaces can be seen as no less general than the study of topological spaces. For such study,Quasi-Uniform Spaces is a necessary, self-contained reference for both researchers andgraduate students of general topology . Information is made particularly accessible withthe inclusion of an extensive index and bibliography .

Om forfatteren

Peter Fletcher, William F. Lindgren

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.