Quasi-Interpolation

·
· Cambridge Monographs on Applied and Computational Mathematics Libro 37 · Cambridge University Press
Ebook
292
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.

Informazioni sull'autore

Martin D. Buhmann is Professor in the Mathematics Department at Justus Liebig University Giessen. He is the author of over 100 papers in numerical analysis, approximation theory, optimisation and differential equations, and of the monograph Radial Basis Functions: Theory and Implementations (Cambridge, 2003).

Janin Jäger is Postdoctoral Fellow in the Mathematics Department at Justus Liebig University Giessen. Her research focuses on approximation theory using radial basis functions and their application to spherical data and neurophysiology.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.