Quasi-Interpolation

·
· Cambridge Monographs on Applied and Computational Mathematics Libro 37 · Cambridge University Press
Libro electrónico
292
Páginas
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.

Acerca del autor

Martin D. Buhmann is Professor in the Mathematics Department at Justus Liebig University Giessen. He is the author of over 100 papers in numerical analysis, approximation theory, optimisation and differential equations, and of the monograph Radial Basis Functions: Theory and Implementations (Cambridge, 2003).

Janin Jäger is Postdoctoral Fellow in the Mathematics Department at Justus Liebig University Giessen. Her research focuses on approximation theory using radial basis functions and their application to spherical data and neurophysiology.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.