Quasi-Interpolation

·
· Cambridge Monographs on Applied and Computational Mathematics Книга 37 · Cambridge University Press
Електронна книга
292
Страници
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

Quasi-interpolation is one of the most useful and often applied methods for the approximation of functions and data in mathematics and applications. Its advantages are manifold: quasi-interpolants are able to approximate in any number of dimensions, they are efficient and relatively easy to formulate for scattered and meshed nodes and for any number of data. This book provides an introduction into the field for graduate students and researchers, outlining all the mathematical background and methods of implementation. The mathematical analysis of quasi-interpolation is given in three directions, namely on the basis (spline spaces, radial basis functions) from which the approximation is taken, on the form and computation of the quasi-interpolants (point evaluations, averages, least squares), and on the mathematical properties (existence, locality, convergence questions, precision). Learn which type of quasi-interpolation to use in different contexts and how to optimise its features to suit applications in physics and engineering.

За автора

Martin D. Buhmann is Professor in the Mathematics Department at Justus Liebig University Giessen. He is the author of over 100 papers in numerical analysis, approximation theory, optimisation and differential equations, and of the monograph Radial Basis Functions: Theory and Implementations (Cambridge, 2003).

Janin Jäger is Postdoctoral Fellow in the Mathematics Department at Justus Liebig University Giessen. Her research focuses on approximation theory using radial basis functions and their application to spherical data and neurophysiology.

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.