Proceedings of ELM-2016

┬╖ ┬╖ ┬╖ ┬╖
┬╖ Proceedings in Adaptation, Learning and Optimization рдкреБрд╕реНрддрдХ 9 ┬╖ Springer
5.0
рдПрдХ рд╕рдореАрдХреНрд╖рд╛
рдИ-рдмреБрдХ
285
рдкреЗрдЬ
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ

рдЗрд╕ рдИ-рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that тАЬrandom hidden neuronsтАЭ capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for largeтАРscale computing and artificial intelligence.

This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.

рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдПрдВ

5.0
1 рд╕рдореАрдХреНрд╖рд╛

рдЗрд╕ рдИ-рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдкрдарди рдЬрд╛рдирдХрд╛рд░реА

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИ рдСрдбрд┐рдпреЛ рдХрд┐рддрд╛рдмреЗрдВ рд╕реБрди рд╕рдХрддреЗ рд╣реИрдВ.
eReaders рдФрд░ рдЕрдиреНрдп рдбрд┐рд╡рд╛рдЗрд╕
Kobo рдИ-рд░реАрдбрд░ рдЬреИрд╕реА рдИ-рдЗрдВрдХ рдбрд┐рд╡рд╛рдЗрд╕реЛрдВ рдкрд░ рдХреБрдЫ рдкрдврд╝рдиреЗ рдХреЗ рд▓рд┐рдП, рдЖрдкрдХреЛ рдлрд╝рд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░рдХреЗ рдЙрд╕реЗ рдЕрдкрдиреЗ рдбрд┐рд╡рд╛рдЗрд╕ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдирд╛ рд╣реЛрдЧрд╛. рдИ-рд░реАрдбрд░ рдкрд░ рдХрд╛рдо рдХрд░рдиреЗ рд╡рд╛рд▓реА рдлрд╝рд╛рдЗрд▓реЛрдВ рдХреЛ рдИ-рд░реАрдбрд░ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП, рд╕рд╣рд╛рдпрддрд╛ рдХреЗрдВрджреНрд░ рдХреЗ рдирд┐рд░реНрджреЗрд╢реЛрдВ рдХрд╛ рдкрд╛рд▓рди рдХрд░реЗрдВ.

рд╕реАрд░реАрдЬрд╝ рдЬрд╛рд░реА рд░рдЦреЗрдВ

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдИ-рдмреБрдХ