Principles of Random Walk: Edition 2

· Graduate Texts in Mathematics Buch 34 · Springer Science & Business Media
E-Book
408
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

In this edition a large number of errors have been corrected, an occasional proof has been streamlined, and a number of references are made to recent pro gress. These references are to a supplementary bibliography, whose items are referred to as [S1] through [S26]. A thorough revision was not attempted. The development of the subject in the last decade would have required a treatment in a much more general con text. It is true that a number of interesting questions remain open in the concrete setting of random walk on the integers. (See [S 19] for a recent survey). On the other hand, much of the material of this book (foundations, fluctuation theory, renewal theorems) is now available in standard texts, e.g. Feller [S9], Breiman [S1], Chung [S4] in the more general setting of random walk on the real line. But the major new development since the first edition occurred in 1969, when D. Ornstein [S22] and C. J. Stone [S26] succeeded in extending the recurrent potential theory in· Chapters II and VII from the integers to the reals. By now there is an extensive and nearly complete potential theory of recurrent random walk on locally compact groups, Abelian ( [S20], [S25]) as well as non Abelian ( [S17], [S2] ). Finally, for the non-specialist there exists now an unsurpassed brief introduction to probabilistic potential theory, in the context of simple random walk and Brownian motion, by Dynkin and Yushkevich [S8].

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.