Principles of Random Walk: Edition 2

· Graduate Texts in Mathematics Book 34 · Springer Science & Business Media
Ebook
408
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In this edition a large number of errors have been corrected, an occasional proof has been streamlined, and a number of references are made to recent pro gress. These references are to a supplementary bibliography, whose items are referred to as [S1] through [S26]. A thorough revision was not attempted. The development of the subject in the last decade would have required a treatment in a much more general con text. It is true that a number of interesting questions remain open in the concrete setting of random walk on the integers. (See [S 19] for a recent survey). On the other hand, much of the material of this book (foundations, fluctuation theory, renewal theorems) is now available in standard texts, e.g. Feller [S9], Breiman [S1], Chung [S4] in the more general setting of random walk on the real line. But the major new development since the first edition occurred in 1969, when D. Ornstein [S22] and C. J. Stone [S26] succeeded in extending the recurrent potential theory in· Chapters II and VII from the integers to the reals. By now there is an extensive and nearly complete potential theory of recurrent random walk on locally compact groups, Abelian ( [S20], [S25]) as well as non Abelian ( [S17], [S2] ). Finally, for the non-specialist there exists now an unsurpassed brief introduction to probabilistic potential theory, in the context of simple random walk and Brownian motion, by Dynkin and Yushkevich [S8].

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.