Principles of Random Walk: Edition 2

· Graduate Texts in Mathematics Βιβλίο 34 · Springer Science & Business Media
ebook
408
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

In this edition a large number of errors have been corrected, an occasional proof has been streamlined, and a number of references are made to recent pro gress. These references are to a supplementary bibliography, whose items are referred to as [S1] through [S26]. A thorough revision was not attempted. The development of the subject in the last decade would have required a treatment in a much more general con text. It is true that a number of interesting questions remain open in the concrete setting of random walk on the integers. (See [S 19] for a recent survey). On the other hand, much of the material of this book (foundations, fluctuation theory, renewal theorems) is now available in standard texts, e.g. Feller [S9], Breiman [S1], Chung [S4] in the more general setting of random walk on the real line. But the major new development since the first edition occurred in 1969, when D. Ornstein [S22] and C. J. Stone [S26] succeeded in extending the recurrent potential theory in· Chapters II and VII from the integers to the reals. By now there is an extensive and nearly complete potential theory of recurrent random walk on locally compact groups, Abelian ( [S20], [S25]) as well as non Abelian ( [S17], [S2] ). Finally, for the non-specialist there exists now an unsurpassed brief introduction to probabilistic potential theory, in the context of simple random walk and Brownian motion, by Dynkin and Yushkevich [S8].

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.