Polytopes and Graphs

· Cambridge Studies in Advanced Mathematics Livre 211 · Cambridge University Press
Ebook
482
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

This book introduces convex polytopes and their graphs, alongside the results and methodologies required to study them. It guides the reader from the basics to current research, presenting many open problems to facilitate the transition. The book includes results not previously found in other books, such as: the edge connectivity and linkedness of graphs of polytopes; the characterisation of their cycle space; the Minkowski decomposition of polytopes from the perspective of geometric graphs; Lei Xue's recent lower bound theorem on the number of faces of polytopes with a small number of vertices; and Gil Kalai's rigidity proof of the lower bound theorem for simplicial polytopes. This accessible introduction covers prerequisites from linear algebra, graph theory, and polytope theory. Each chapter concludes with exercises of varying difficulty, designed to help the reader engage with new concepts. These features make the book ideal for students and researchers new to the field.

Quelques mots sur l'auteur

Guillermo Pineda Villavicencio is an Associate Professor in Computer Science and Mathematics at Deakin University, Australia, and a Fellow of AdvanceHE. He conducts research on graph theory and discrete geometry, the construction and analysis of large networks, and applications of mathematics to health informatics. He is an Accredited Member of the Australian Mathematical Society and served on its Council from 2018 to 2022. He is also a Life Member of the Combinatorial Mathematics Society of Australasia.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.