Perfect And Amicable Numbers

· Selected Chapters Of Number Theory: Special Numbers Кніга 2 · World Scientific
Электронная кніга
464
Старонкі
Падыходзячыя
Ацэнкі і водгукі не спраўджаны  Даведацца больш

Пра гэту электронную кнігу

This book contains a detailed presentation on the theory of two classes of special numbers, perfect numbers, and amicable numbers, as well as some of their generalizations. It also gives a large list of their properties, facts and theorems with full proofs. Perfect and amicable numbers, as well as most classes of special numbers, have many interesting properties, including numerous modern and classical applications as well as a long history connected with the names of famous mathematicians.The theory of perfect and amicable numbers is a part of pure Arithmetic, and in particular a part of Divisibility Theory and the Theory of Arithmetical Functions. Thus, for a perfect number n it holds σ(n) = 2n, where σ is the sum-of-divisors function, while for a pair of amicable numbers (n, m) it holds σ(n) = σ(m) = n + m. This is also an important part of the history of prime numbers, since the main formulas that generate perfect numbers and amicable pairs are dependent on the good choice of one or several primes of special form.Nowadays, the theory of perfect and amicable numbers contains many interesting mathematical facts and theorems, alongside many important computer algorithms needed for searching for new large elements of these two famous classes of special numbers.This book contains a list of open problems and numerous questions related to generalizations of the classical case, which provides a broad perspective on the theory of these two classes of special numbers. Perfect and Amicable Numbers can be useful and interesting to both professional and general audiences.

Ацаніце гэту электронную кнігу

Падзяліцеся сваімі меркаваннямі.

Чытанне інфармацыb

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
У вэб-браўзеры камп’ютара можна слухаць аўдыякнігі, купленыя ў Google Play.
Электронныя кнiгi i iншыя прылады
Каб чытаць на такіх прыладах для электронных кніг, як, напрыклад, Kobo, трэба спампаваць файл і перанесці яго на сваю прыладу. Выканайце падрабязныя інструкцыі, прыведзеныя ў Даведачным цэнтры, каб перанесці файлы на прылады, якія падтрымліваюцца.