Partial Differential Equations in Fluid Mechanics

· ·
· London Mathematical Society Lecture Note Series Livro 452 · Cambridge University Press
E-book
339
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

The Euler and Navier–Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of Warwick in 2016, serves to consolidate, survey and further advance research in this area. It contains reviews of recent progress and classical results, as well as cutting-edge research articles. Topics include Onsager's conjecture for energy conservation in the Euler equations, weak-strong uniqueness in fluid models and several chapters address the Navier–Stokes equations directly; in particular, a retelling of Leray's formative 1934 paper in modern mathematical language. The book also covers more general PDE methods with applications in fluid mechanics and beyond. This collection will serve as a helpful overview of current research for graduate students new to the area and for more established researchers.

Sobre o autor

Charles L. Fefferman is the Herbert Jones Professor in the Mathematics Department at Princeton University, New Jersey. He was awarded the Fields Medal in 1978.

James C. Robinson is a Professor of Mathematics at the University of Warwick. He is also a Royal Society University Research Fellow and an EPSRC Leadership Fellow.

José L. Rodrigo is a Professor of Mathematics at the University of Warwick, and has been awarded an ERC Consolidator Grant.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.