Partial Differential Equations in Fluid Mechanics

· ·
· London Mathematical Society Lecture Note Series Bok 452 · Cambridge University Press
E-bok
339
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The Euler and Navier–Stokes equations are the fundamental mathematical models of fluid mechanics, and their study remains central in the modern theory of partial differential equations. This volume of articles, derived from the workshop 'PDEs in Fluid Mechanics' held at the University of Warwick in 2016, serves to consolidate, survey and further advance research in this area. It contains reviews of recent progress and classical results, as well as cutting-edge research articles. Topics include Onsager's conjecture for energy conservation in the Euler equations, weak-strong uniqueness in fluid models and several chapters address the Navier–Stokes equations directly; in particular, a retelling of Leray's formative 1934 paper in modern mathematical language. The book also covers more general PDE methods with applications in fluid mechanics and beyond. This collection will serve as a helpful overview of current research for graduate students new to the area and for more established researchers.

Om forfatteren

Charles L. Fefferman is the Herbert Jones Professor in the Mathematics Department at Princeton University, New Jersey. He was awarded the Fields Medal in 1978.

James C. Robinson is a Professor of Mathematics at the University of Warwick. He is also a Royal Society University Research Fellow and an EPSRC Leadership Fellow.

José L. Rodrigo is a Professor of Mathematics at the University of Warwick, and has been awarded an ERC Consolidator Grant.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.