Oscillatory Models in General Relativity

·
· De Gruyter Studies in Mathematical Physics Livro 41 · Walter de Gruyter GmbH & Co KG
E-book
152
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists.

Contents
Part I: Dissipative geometry and general relativity theory
Pseudo-Riemannian geometry and general relativity
Dynamics of universe models
Anisotropic and homogeneous universe models
Metric waves in a nonstationary universe and dissipative oscillator
Bosonic and fermionic models of a Friedman–Robertson–Walker universe
Time dependent constants in an oscillatory universe

Part II: Variational principle for time dependent oscillations and dissipations
Lagrangian and Hamilton descriptions
Damped oscillator: classical and quantum theory
Sturm–Liouville problem as a damped oscillator with time dependent damping and frequency
Riccati representation of time dependent damped oscillators
Quantization of the harmonic oscillator with time dependent parameters

Sobre o autor

Esra Russel, New York University Abu Dhabi, United Arab Emirates, Oktay Pashaev, Izmir Institute of Technology, Turkey

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.