Optimization Under Stochastic Uncertainty: Methods, Control and Random Search Methods

· International Series in Operations Research & Management Science Llibre 296 · Springer Nature
3,0
1 ressenya
Llibre electrònic
393
Pàgines
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

This book examines application and methods to incorporating stochastic parameter variations into the optimization process to decrease expense in corrective measures. Basic types of deterministic substitute problems occurring mostly in practice involve i) minimization of the expected primary costs subject to expected recourse cost constraints (reliability constraints) and remaining deterministic constraints, e.g. box constraints, as well as ii) minimization of the expected total costs (costs of construction, design, recourse costs, etc.) subject to the remaining deterministic constraints.After an introduction into the theory of dynamic control systems with random parameters, the major control laws are described, as open-loop control, closed-loop, feedback control and open-loop feedback control, used for iterative construction of feedback controls. For approximate solution of optimization and control problems with random parameters and involving expected cost/loss-type objective, constraint functions, Taylor expansion procedures, and Homotopy methods are considered, Examples and applications to stochastic optimization of regulators are given. Moreover, for reliability-based analysis and optimal design problems, corresponding optimization-based limit state functions are constructed. Because of the complexity of concrete optimization/control problems and their lack of the mathematical regularity as required of Mathematical Programming (MP) techniques, other optimization techniques, like random search methods (RSM) became increasingly important.

Basic results on the convergence and convergence rates of random search methods are presented. Moreover, for the improvement of the – sometimes very low – convergence rate of RSM, search methods based on optimal stochastic decision processes are presented. In order to improve the convergence behavior of RSM, the random search procedure is embedded into a stochastic decision process for an optimal control of the probability distributions of the search variates (mutation random variables).


Puntuacions i ressenyes

3,0
1 ressenya

Sobre l'autor

Kurt Marti is a Professor of Engineering Mathematics at the University of Bundeswehr Munich. He has been Chairman of the IFIP-Working Group 7.7 on “Stochastic Optimization” and Chairman of the GAMM-Special Interest Group “Applied Stochastics and Optimization”. Professor Marti has published several books, both in German and in English and he is author of more than 160 papers in refereed journals and book chapters.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.

Continua la sèrie

Més d'aquest autor: Kurt Marti

Llibres electrònics similars