Ocean Modeling and Parameterization

·
· Nato Science Series C 第 516 冊 · Springer Science & Business Media
電子書
451
評分和評論未經驗證  瞭解詳情

關於本電子書

The realism of large scale numerical ocean models has improved dra matically in recent years, in part because modern computers permit a more faithful representation of the differential equations by their algebraic analogs. Equally significant, if not more so, has been the improved under standing of physical processes on space and time scales smaller than those that can be represented in such models. Today, some of the most challeng ing issues remaining in ocean modeling are associated with parameterizing the effects of these high-frequency, small-space scale processes. Accurate parameterizations are especially needed in long term integrations of coarse resolution ocean models that are designed to understand the ocean vari ability within the climate system on seasonal to decadal time scales. Traditionally, parameterizations of subgrid-scale, high-frequency mo tions in ocean modeling have been based on simple formulations, such as the Reynolds decomposition with constant diffusivity values. Until recently, modelers were concerned with first order issues such as a correct represen tation of the basic features of the ocean circulation. As the numerical simu lations become better and less dependent on the discretization choices, the focus is turning to the physics of the needed parameterizations and their numerical implementation. At the present time, the success of any large scale numerical simulation is directly dependent upon the choices that are made for the parameterization of various subgrid processes.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。