Obtaining Generating Functions

· Springer Tracts in Natural Philosophy Kitab 21 · Springer Science & Business Media
4,0
1 rəy
E-kitab
104
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

This book is an introduction to the study of methods of obtaining generating functions. It is an expository work at the level of the beginning graduate student. The first part of Chapter I gives the reader the necessary definitions and basic concepts. The fundamental method of direct summation is explained and illustrated. The second part of Chapter I deals with the methods developed by Rainville. These methods are based principally on inventive manipulation of power series. Weisner's group-theoretic method is explained in detail in Chapter II and is further illustrated in Chapter III. When this method is applicable, it yields a set of at least three generating functions. In Chapter II for the Laguerre polynomials six generating functions were found. Truesdell's method is studied in Chapter IV. For a given set of functions {fez, an the success of this method depends on the existence of certain transformations. If fez, a) can be transformed into F(z, a) such that a a-; F(z, a)=F(z, a+ 1), or if fez, a) can be transformed into G(z, a) such that a a-; G(z, a)=G(z, a-I), then from each transformed function a generating function can be obtained. Truesdell's method for obtaining the transformed functions does not require any ingenuity on the user's part. Truesdell has shown how these simple results may be exploited to generate more complicated results by means of specified, systematic, and general processes. His method of obtaining generating functions is only one of these results.

Reytinqlər və rəylər

4,0
1 rəy

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.