Numerical Analysis for Statisticians

· Springer Science & Business Media
電子書
356
評分和評論未經驗證  瞭解詳情

關於本電子書

This book, like many books, was born in frustration. When in the fall of 1994 I set out to teach a second course in computational statistics to d- toral students at the University of Michigan, none of the existing texts seemed exactly right. On the one hand, the many decent, even inspiring, books on elementary computational statistics stress the nuts and bolts of using packaged programs and emphasize model interpretation more than numerical analysis. On the other hand, the many theoretical texts in - merical analysis almost entirely neglect the issues of most importance to statisticians. TheclosestbooktomyidealwastheclassicaltextofKennedy and Gentle [2]. More than a decade and a half after its publication, this book still has many valuable lessons to teach statisticians. However, upon re?ecting on the rapid evolution of computational statistics, I decided that the time was ripe for an update. The book you see before you represents a biased selection of those topics in theoretical numerical analysis most relevant to statistics. By intent this book is not a compendium of tried and trusted algorithms, is not a c- sumer’s guide to existing statistical software, and is not an exposition of computer graphics or exploratory data analysis. My focus on principles of numerical analysis is intended to equip students to craft their own software and to understand the advantages and disadvantages of di?erent numerical methods. Issues of numerical stability, accurate approximation, compu- tional complexity, and mathematical modeling share the limelight and take precedence over philosophical questions of statistical inference.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。