Numeri: La creazione continua della matematica

Bollati Boringhieri
3,5
2 resensies
E-boek
133
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

«Il primo uomo che colse l’analogia esistente tra un gruppo di sette pesci e un gruppo di sette giorni – scriveva Alfred Whitehead – compì un notevole passo avanti nella storia del pensiero». Iniziava così l’avventura di contare e misurare. All'inizio si contava e si misurava ciò che aveva utilità pratica, come giorni, greggi, lunghezze; ma poco alla volta tutto verrà misurato: aree, volumi, lo spostamento degli astri, gli angoli. Si arriverà a utilizzare numeri per misurare cose che non possono essere rappresentate né come oggetti né da oggetti, come la probabilità o l'infinito. Il progresso della conoscenza umana è scandito dall’invenzione di nuove specie di numeri. Gli antichi avevano creduto di raggiungere un punto fermo con la definizione dei numeri frazionali, i numeri «rotti»: «un mezzo» sta a metà tra zero e uno, «un quarto» a metà tra zero e un mezzo, e così via... aumentando il denominatore possiamo individuare intervalli sempre più piccoli, saturando di numeri minuscoli la retta delle grandezze fino a riempirla completamente. O almeno così sembrava logico; e invece no, ecco che i numeri compiono la loro prima grande beffa, e Ippaso di Metaponto, verso il 500 a.C., si rende conto che in quella fitta trama di «razionali» si inseriscono altri numeri, completamente diversi («irrazionali», appunto), il cui capostipite è l’inquietante radice quadrata di due. Poi verranno gli «immaginari», con le loro impossibili radici di numeri negativi. I numeri non hanno mai terminato il loro cammino. In continuo contatto con la realtà e in perenne evoluzione assieme al procedere delle conoscenze, hanno saputo a loro volta adeguarsi alle esigenze contingenti, aprire nuove strade, «inventarsi» da capo, stupire e meravigliare. È questo che si propone di fare Gabriele Lolli in queste pagine: raccontarci con rigore l’universo dei numeri, e come la sua varietà sia logicamente unificata, rendendoci partecipi anche delle ultimissime e stranissime novità in questo campo, quelle che non si studiano a scuola, dai quaternioni ai numeri surreali, categorie sempre più strane, se si vuole, ma anche più sofisticate e inventive.

Graderings en resensies

3,5
2 resensies

Meer oor die skrywer

Gabriele Lolli insegna Filosofia della matematica alla Scuola Normale Superiore di Pisa dal 2008, dopo aver insegnato Logica matematica allUniversità di Torino. Si è interessato di teoria degli insiemi, di applicazioni della logica all'informatica e allintelligenza artificiale, e di storia e filosofia della logica e della matematica. Tra i suoi libri ricordiamo: Sotto il segno di Gödel (2007), Guida alla teoria degli insiemi (2008), La guerra dei trentanni (1900-1930). Da Hilbert a Gödel (2011) e Nascita di un'idea matematica (2013). Per Bollati Boringhieri ha pubblicato: Teoria assiomatica degli insiemi (1974), Categorie, universi e principi di riflessione (1977), Lezioni di logica matematica (1978), Dagli insiemi ai numeri (1994), Il riso di Talete. Matematica e umorismo (1998), La crisalide e la farfalla. Donne e matematica (2000), QED. Fenomenologia della dimostrazione (2005), Discorso sulla matematica. Una rilettura delle lezioni americane di Italo Calvino (2011), Se viceversa. Trenta pezzi facili e meno facili di matematica (2014) e Numeri. La creazione continua della matematica (2015). È tra i curatori delledizione italiana delle Opere di Gödel (1999-2009).

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.