Nonlinear Partial Differential Equations And Applications: Proceedings Of The Conference

·
· World Scientific
Carte electronică
268
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică


Contents: Direct and Inverse Diffraction by Periodic Structures (G Bao)Weak Flow of H-Systems (Y-M Chen)Strongly Compact Attractor for Dissipative Zakharov Equations (B-L Guo et al.)C∞-Solutions of Generalized Porous Medium Equations (M Ôtani & Y Sugiyama)Cauchy Problem for Generalized IMBq Equation (G-W Chen & S-B Wang)Inertial Manifolds for a Nonlocal Kuramoto–Sivashinsky Equation (J-Q Duan et al.)Weak Solutions of the Generalized Magnetic Flow Equations (S-H He & Z-D Dai)The Solution of Hammerstein Integral Equation Without Coercive Conditions (Y-L Shu)Global Behaviour of the Solution of Nonlinear Forest Evolution Equation (D-J Wang)Uniqueness of Generalized Solutions for Semiconductor Equations (J-S Xing & Y Hu)On the Vectorial Hamilton–Jacobi System (B-S Yan)An Integrable Hamiltonian System Associated with cKdV Hierarchy (J-S Zhang et al.)and other papers
Readership: Mathematicians.
Keywords:Diffraction;Weak Flow;Zakharov Equations;Porous Medium Equations;Cauchy Problem;IMBq Equation;Kuramoto-Sivashinsky Equation;Magnetic Flow Equations;Hammerstein Integral Equation;Nonlinear Forest Evolution Equation;Uniqueness;Generalized Solutions;Semiconductor Equations;Hamilton–Jacobi System;Hamiltonian System;cKdV Hierarchy

Despre autor

Boling Guo (Institute of Applied Physics & Computational Mathematics, PR China);Dadi Yang (Chongqing University, P R China)

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.