Nonlinear Evolution Equations

· · ·
EDP Sciences
E-book
372
Strony
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

The book introduces the existence, uniqueness, regularity and the long time behavior of solutions with respect to space and time, and the explosion phenomenon for some evolution equations, including the KdV equation, the nonlinear Schrödinger equation, the sine-Gordon equation, the Zakharov equations, the Landau-Lifshitz equations, the Boussinesq equation, the Navier-Stokes equations and the Newton-Boussinesq equations etc., as well as the basic concepts and research methods of infinite-dimensional dynamical systems. This book presents fundamental elements and important advances in nonlinear evolution equations. It is intended for senior university students, graduate students, postdoctoral fellows and young teachers to acquire a basic understanding of this field, while providing a reference for experienced researchers and teachers in natural sciences and engineering technology to broaden their knowledge.

O autorze

Boling GUO (Academician of the Chinese Academy of Sciences, researcher and thesis supervisor of Institute of Applied Physics and Computational Mathematics) has been mainly engaged in the research of nonlinear evolution equations and infinite-dimensional dynamical systems.

Fei CHEN (Associate Professor, School of Mathematics and Statistics, Qingdao University) focuses on research into well-posedness and large-time behavior to solutions of some fluid mechanics equations.

Jing SHAO (Associate Professor, Normal College, Shenyang University) carries out research on qualitative theory of fractional differential equations.

Ting LUO (Assistant professor, Master Advisor, School of Mathematical Sciences, Zhejiang Normal University) has her main research interest on stability theory of nonlinear wave equations, water waves, modeling and analysis of simplified phenomenological models, and integrable system.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.