reportĐiểm xếp hạng và bài đánh giá chưa được xác minh Tìm hiểu thêm
Giới thiệu về sách điện tử này
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia.
Topics covered in this volume include:
Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons;
The homotopy types of nonarchimedean analytifications;
The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications;
Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves;
Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and
Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.
Xếp hạng sách điện tử này
Cho chúng tôi biết suy nghĩ của bạn.
Đọc thông tin
Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho Android và iPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.