Nonabelian Multiplicative Integration On Surfaces

· World Scientific
Ebook
188
pagine
Idoneo
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Nonabelian multiplicative integration on curves is a classical theory. This volume is about the 2-dimensional case, which is much more difficult. In our construction, the setup is a Lie crossed module: there is a Lie group H, together with an action on it by another Lie group G. The multiplicative integral is an element of H, and it is the limit of Riemann products. Each Riemann product involves a fractal decomposition of the surface into kites (triangles with strings connecting them to the base point). There is a twisting of the integrand, that comes from a 1-dimensional multiplicative integral along the strings, with values in the group G.The main result of this work is the 3-dimensional nonabelian Stokes theorem. This result is new; only a special case of it was predicted (without proof) in papers in mathematical physics. Our constructions and proofs are of a straightforward nature. There are plenty of illustrations to clarify the geometric constructions.Our volume touches on some of the central issues (e.g., descent for nonabelian gerbes) in an unusually down-to-earth manner, involving analysis, differential geometry, combinatorics and Lie theory — instead of the 2-categories and 2-functors that other authors prefer.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.