Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics

· Infinite Study
e-Buku
167
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

 Neutrosophic Over-/Under-/Off-Set and -Logic were defined for the first time by Smarandache in 1995 and published in 2007. They are totally different from other sets/logics/probabilities.

He extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}.

This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or classical/imprecise probability, where the values are not allowed outside the interval [0, 1], since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components.

Example of Neutrosophic Offset.

In a given company a full-time employer works 40 hours per week. Let’s consider the last week period.

Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; hence, her membership degree was 30/40 = 0.75 < 1.

John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this company.

But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 1. Thus, we need to make distinction between employees who work overtime, and those who work full-time or part-time. That’s why we need to associate a degree of membership strictly greater than 1 to the overtime workers.

Now, another employee, Jane, was absent without pay for the whole week, so her degree of membership was 0/40 = 0.

Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 worked hours), but he produced, by accidentally starting a devastating fire, much damage to the company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = - 0.50 < 0.

Consequently, we need to make distinction between employees who produce damage, and those who produce profit, or produce neither damage no profit to the company.

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them into consideration.

Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to respectively Neutrosophic Over-/Under-/Off-Logic, -Measure, -Probability, -Statistics etc. [Smarandache, 2007].

 

Keywords:

Neutrosophic Overset, Neutrosophic Underset, Neutrosophic Offset;

Neutrosophic Overlogic, Neutrosophic Underlogic, Neutrosophic Offlogic;

Neutrosophic Overmeasure, Neutrosophic Undermeasure, Neutrosophic Offmeasure;

Neutrosophic Overprobability, Neutrosophic Underprobability, Neutrosophic Offprobability;

Neutrosophic Overstatistics, Neutrosophic Understatistics, Neutrosophic Offstatistics, etc.

 

 

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.