NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited)

· Infinite Study
Sách điện tử
22
Trang
Đủ điều kiện
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) Geometry, and the NeutroGeometry results from the partial negation of one or more axioms [and no total negation of no axiom] from any geometric axiomatic system and from any type of geometry. Generally, instead of a classical geometric Axiom, one may take any classical geometric Theorem from any axiomatic system and from any type of geometry, and transform it by NeutroSophication or AntiSophication into a NeutroTheorem or AntiTheorem respectively in order to construct a NeutroGeometry or AntiGeometry. Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of the Non-Euclidean Geometries. In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present applications of many NeutroStructures in our real world.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.