NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited)

· Infinite Study
eBook
22
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) Geometry, and the NeutroGeometry results from the partial negation of one or more axioms [and no total negation of no axiom] from any geometric axiomatic system and from any type of geometry. Generally, instead of a classical geometric Axiom, one may take any classical geometric Theorem from any axiomatic system and from any type of geometry, and transform it by NeutroSophication or AntiSophication into a NeutroTheorem or AntiTheorem respectively in order to construct a NeutroGeometry or AntiGeometry. Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of the Non-Euclidean Geometries. In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present applications of many NeutroStructures in our real world.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.