Neuro Symbolic Reasoning and Learning

· · · ·
· Springer Nature
eBook
119
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book provides a broad overview of the key results and frameworks for various NSAI tasks as well as discussing important application areas. This book also covers neuro symbolic reasoning frameworks such as LNN, LTN, and NeurASP and learning frameworks. This would include differential inductive logic programming, constraint learning and deep symbolic policy learning. Additionally, application areas such a visual question answering and natural language processing are discussed as well as topics such as verification of neural networks and symbol grounding. Detailed algorithmic descriptions, example logic programs, and an online supplement that includes instructional videos and slides provide thorough but concise coverage of this important area of AI.

Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding prior knowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas.

This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.

저자 정보

Paulo Shakarian is an associate professor at Arizona State University. His research focuses on symbolic AI and hybrid symbolic-ML systems. He received his Ph.D. from the University of Maryland, College Park. He is a past DARPA Military Fellow, AFOSR Young Investigator recipient, and his work earned multiple “best paper” awards.
Gerardo I. Simari is a professor at UNS, and a researcher at CONICET. His research focuses on AI and Databases, and reasoning under uncertainty. He received a PhD in computer science from University of Maryland College Park and later joined the Department of Computer Science, University of Oxford, where he was also a Fulford Junior Research Fellow of Somerville College.
Chitta Baral is a Professor at the Arizona State University, and a past President of KR Inc. His research interests include Knowledge Representation and Reasoning, NLP and Image Understanding and often involves combining logical reasoning with explicit knowledge and neural learning and reasoning with textual and perceptual inputs.
Bowen Xi is a Ph.D. student at Arizona State University, specializing in the field of Neural Symbolic AI. She is passionate about combining the strengths of neural networks and symbolic reasoning to advance the field of artificial intelligence. Bowen's research interests include developing novel algorithms and techniques that enable machines to learn and reason like humans.
Lahari Pokala is a student pursuing her Master's degree at Arizona State University, where she is majoring in Computer Science. Her interests lie in artificial intelligence and data engineering.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.