Introduction to Finite and Infinite Dimensional Lie (Super)algebras

· Academic Press
Ebook
512
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras

About the author

N. Sthanumoorthy has 45 years of teaching and research experience. Formerly Professor and Professor Emeritus, Dr Sthanumoorthy is presently the Principal Investigator of a Book-Writing Project funded by "Science and Engineering Research Board - Department of Science and Technology, Government of India in RIASM, University of Madras, India. He has published several research papers on topics closely related to the title of the present book, guided many Ph.D. scholars and evaluated several Ph.D. theses. He was an editor of Kac-Moody Lie Algebras and Related topics, which published as volume 343 of 'Contemporary Mathematics (AMS)', and he is a reviewer for Mathematical Reviews. He delivered lectures in many institutions in the USA, Germany, Italy, China, and India. Many awards and honors were also conferred on the author.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.