Nanomagnetic Materials: Fabrication, Characterization and Application

· ·
· Elsevier
Carte electronică
812
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism. - Explains manufacturing principles and process for nanomagnetic materials - Discusses physical and chemical properties and potential industrial applications, such as magnetic data storage, sensors, oscillator, permanent magnets, power generations, and biomedical applications - Assesses the major challenges of using magnetic nanomaterials on a broad scale

Despre autor

Akinobu Yamaguchi is Associate Professor, Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Japan. His research focuses on the fabrication of of artificial materials with modulated and/or periodic magnetic structure composed of nanoscale magnets, which are intentionally added topologic designs.

Atsufumi Hirohata is a Professor in Nanoelectronics at the University of York, United Kingdom. His area of research covers spintronics and quantum nanoelectronics, with recent focus on the fabrication of a spin operator and nano-spin motor as well as growth of a half-metallic film.

Bethanie Stadler is Professor, Electrical and Computer Engineering at the University of Minnesota, USA. Her research lies in the areas of nanomagnetic and photonic materials and devices

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.