Multicriteria Optimization

· Lecture Notes in Economics and Mathematical Systems Kirja 491 · Springer Science & Business Media
E-kirja
248
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Life is about decisions. Decisions, no matter if made by a group or an indi vidual, involve several conflicting objectives. The observation that real world problems have to be solved optimally according to criteria, which prohibit an "ideal" solution - optimal for each decision-maker under each of the criteria considered - has led to the development of multicriteria optimization. From its first roots, which where laid by Pareto at the end of the 19th century the discipline has prospered and grown, especially during the last three decades. Today, many decision support systems incorporate methods to deal with conflicting objectives. The foundation for such systems is a mathematical theory of optimization under multiple objectives. Fully aware of the fact that there have been excellent textbooks on the topic before, I do not claim that this is better text, but it has a has a consid erably different focus. Some of the available books develop the mathematical background in great depth, such as [SNT85, GN90, Jah86). Others focus on a specific structure of the problems covered as [Zel74, Ste85, Mie99) or on methodology [Yu85, CH83a, HM79). Finally there is the area of multicriteria decision aiding [Roy96, Vin92, KR93), the main goal of which is to help deci sion makers find the final solution (among many "optimal" ones) eventually to be implemented.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.

Jatkoa sarjalle

Lisää kirjoittajalta Matthias Ehrgott

Samanlaisia e-kirjoja