Multicriteria Optimization

· Lecture Notes in Economics and Mathematical Systems Βιβλίο 491 · Springer Science & Business Media
ebook
248
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Life is about decisions. Decisions, no matter if made by a group or an indi vidual, involve several conflicting objectives. The observation that real world problems have to be solved optimally according to criteria, which prohibit an "ideal" solution - optimal for each decision-maker under each of the criteria considered - has led to the development of multicriteria optimization. From its first roots, which where laid by Pareto at the end of the 19th century the discipline has prospered and grown, especially during the last three decades. Today, many decision support systems incorporate methods to deal with conflicting objectives. The foundation for such systems is a mathematical theory of optimization under multiple objectives. Fully aware of the fact that there have been excellent textbooks on the topic before, I do not claim that this is better text, but it has a has a consid erably different focus. Some of the available books develop the mathematical background in great depth, such as [SNT85, GN90, Jah86). Others focus on a specific structure of the problems covered as [Zel74, Ste85, Mie99) or on methodology [Yu85, CH83a, HM79). Finally there is the area of multicriteria decision aiding [Roy96, Vin92, KR93), the main goal of which is to help deci sion makers find the final solution (among many "optimal" ones) eventually to be implemented.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.

Συνεχίστε τη σειρά

Περισσότερα από τον χρήστη Matthias Ehrgott

Παρόμοια ebook