This paper uses machine learning, simulation, and data mining methods to develop Systematic Risk Profiles of three developing economies: Kenya, Rwanda, and Malawi. We focus on three exogenous shocks with implications for economic performance: world market prices, capital flows, and climate-driven sectoral productivity. In these and other developing countries, recent decades have been characterized by increased risks associated with all these factors, and there is a demand for instruments that can help to disentangle them. For each country, we utilize historical data to develop multi-variate distributions of shocks. We then sample from these distributions to obtain a series of shock vectors, which we label economic uncertainty scenarios. These scenarios are then entered into economywide computable general equilibrium (CGE) simulation models for the three countries, which allow us to quantify the impact of increased uncertainty on major economic indicators. Finally, we utilize importance metrics from the random forest machine learning algorithm and relative importance metrics from multiple linear regression models to quantify the importance of country-specific risk factors for country performance. We find that Malawi and Rwanda are more vulnerable to sectoral productivity shocks, and Kenya is more exposed to external risks. These findings suggest that a country’s level of development and integration into the global economy are key driving forces defining their risk profiles. The methodology of Systematic Risk Profiling can be applied to many other countries, delineating country-specific risks and vulnerabilities.