Modern Nonlinear Equations

· Courier Corporation
Е-књига
496
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

Nonlinear equations have existed for hundreds of years; their systematic study, however, is a relatively recent phenomenon. This volume, together with its companion, Nonlinear Mathematics (Dover 64233-X), provides exceptionally comprehensive coverage of this recently formed area of study. It encompasses both older and more recent developments in the field of equations, with particular emphasis on nonlinear equations because, as Professor Saaty, maintains, "that is what is needed today."
Together the two volumes cover all the major types of classical equations (except partial differential equations, which require a separate volume). This volume includes material on seven types: operator equations, functional equations, difference equations, delay-differential equations, integral equations, integro-differential equations and stochastic differential equations. Special emphasis is placed on linear and nonlinear equations in function spaces and on general methods of solving different types of such equations.
Above all, this book is practical. It reviews the variety of existing types of equations and provides methods for their solution. It is meant to help the reader acquire new methods for formulating problems. Its clear organization and copious references make it suitable for graduate students as well as scientists, technologists and mathematicians.
"...a welcome contribution to the existing literature..." — Math. Reviews.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.