Modern Nonlinear Equations

· Courier Corporation
E-boek
496
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Nonlinear equations have existed for hundreds of years; their systematic study, however, is a relatively recent phenomenon. This volume, together with its companion, Nonlinear Mathematics (Dover 64233-X), provides exceptionally comprehensive coverage of this recently formed area of study. It encompasses both older and more recent developments in the field of equations, with particular emphasis on nonlinear equations because, as Professor Saaty, maintains, "that is what is needed today."
Together the two volumes cover all the major types of classical equations (except partial differential equations, which require a separate volume). This volume includes material on seven types: operator equations, functional equations, difference equations, delay-differential equations, integral equations, integro-differential equations and stochastic differential equations. Special emphasis is placed on linear and nonlinear equations in function spaces and on general methods of solving different types of such equations.
Above all, this book is practical. It reviews the variety of existing types of equations and provides methods for their solution. It is meant to help the reader acquire new methods for formulating problems. Its clear organization and copious references make it suitable for graduate students as well as scientists, technologists and mathematicians.
"...a welcome contribution to the existing literature..." — Math. Reviews.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.