Modern Fourier Analysis: Edition 3

· Graduate Texts in Mathematics Bok 250 · Springer
4,0
2 anmeldelser
E-bok
624
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The primary goal of this book is to present the theoretical foundation of the field of Euclidean Harmonic analysis. This book is Modern in that is contains more recent topics such as function spaces, atomic decompositions, singular integrals of nonconvolution type, and weighted inequalities. This book is mainly addressed to graduate students in mathematics. The prerequisites are satisfactory completion of courses in real and complex variables, and knowledge of classical Fourier analysis topics. This book is intended to present the selected topics in depth and stimulate further study.

This third edition includes a new chapter entitled "Multilinear Harmonic Analysis", which includes sections on multilinear operators, multilinear interpolation, multilinear multiplier operators, Calderón-Zygmund operators of several functions, and multiple weights and weighted norm inequalities. The new chapter will tie nicely with the material in chapters 8, 9, and 10, and the author may add a new section in this chapter applying the techniques of chapter 11 in the context of multilinear harmonic analysis.

In addition to a new chapter, the third edition contains 1000 different corrections and improvements in the existing text, more examples and applications, new and more relevant hints for the existing exercises, about 20-30 new exercises in the existing chapters, and improved references.

Vurderinger og anmeldelser

4,0
2 anmeldelser

Om forfatteren

Loukas Grafakos is a Professor of Mathematics at the University of Missouri at Columbia.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.