Modeling Influenced Criteria in Classifiers' Imbalanced Challenges Based on TrSS Bolstered by The Vague Nature of Neutrosophic Theory

· · ·
· Infinite Study
e-Buku
16
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Because of the advancements in technology, classification learning has become an essential activity in today's environment. Unfortunately, through the classification process, we noticed that the classifiers are unable to deal with the imbalanced data, which indicates there are many more instances (majority instances) in one class than in another. Identifying an appropriate classifier among the various candidates is a time-consuming and complex effort. Improper selection can hinder the classification model's ability to provide the right outcomes. Also, this operation requires preference among a set of alternatives by a set of criteria. Hence, multi-criteria decision-making (MCDM) methodology is the appropriate methodology can deploy in this problem. Accordingly, we applied MCDM and supported it through harnessing neurotrophic theory as motivators in uncertainty circumstances. Single value Neutrosophic sets (SVNSs) are applied as branch of Neutrosophic theory for evaluating and ranks classifiers and allows experts to select the best classifier So, to select the best classifier (alternative), we use MCDM method called Multi- Attributive Ideal-Real Comparative Analysis (MAIRAC) and the criteria weight calculation method called Stepwise Weight Assessment Ratio Analysis (SWARA) where these methods consider single-value neutrosophic sets (SVNSs) to improve and boost these techniques in uncertain scenarios. All these methods are applied after modeling criteria and its sub-criteria through a novel technique is Tree Soft Sets (TrSS). Ultimately, the findings of leveraging these techniques indicated that the hybrid multi-criteria meta-learner (HML)-based classifier is the best classifier compared to the other compared models. 

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.