Combinatorial Machine Learning: A Rough Set Approach

· Studies in Computational Intelligence Book 360 · Springer
Ebook
182
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Decision trees and decision rule systems are widely used in different applications

as algorithms for problem solving, as predictors, and as a way for

knowledge representation. Reducts play key role in the problem of attribute

(feature) selection. The aims of this book are (i) the consideration of the sets

of decision trees, rules and reducts; (ii) study of relationships among these

objects; (iii) design of algorithms for construction of trees, rules and reducts;

and (iv) obtaining bounds on their complexity. Applications for supervised

machine learning, discrete optimization, analysis of acyclic programs, fault

diagnosis, and pattern recognition are considered also. This is a mixture of

research monograph and lecture notes. It contains many unpublished results.

However, proofs are carefully selected to be understandable for students.

The results considered in this book can be useful for researchers in machine

learning, data mining and knowledge discovery, especially for those who are

working in rough set theory, test theory and logical analysis of data. The book

can be used in the creation of courses for graduate students.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.