Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning

· · ·
· Cambridge University Press
Ebook
470
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures.

About the author

Miguel A. Mendez is Assistant Professor at the von Karman Institute for Fluid Dynamics, Belgium. He has extensively used data-driven methods for post-processing numerical and experimental data in fluid dynamics. He developed a novel multi-resolution extension of POD which has been extensively used in various flow configurations of industrial interest. His current interests include data-driven modeling and reinforcement learning.

Andrea Ianiro is Associate Professor at Universidad Carlos III de Madrid, Spain. He is a well-known expert in the field of experimental thermo-fluids. He has pioneered the use of data-driven modal analysis in heat transfer studies for impinging jets and wall-bounded flows with heat transfer. He extensively applies these techniques in combination with advanced measurement techniques such as 3D PIV and IR thermography.

Bernd R. Noack is National Talent Professor at the Harbin Institute of Technology, China. He has pioneered the automated learning of control laws and reduced-order models for real-world experiments as well as nonlinear model-based control from first principles. He is Fellow of the American Physical Society and Mendeley/Web-of-Science Highly Cited Researcher with about 300 publications including 5 books, 2 US patents and over 100 journal publications.

Steven L. Brunton is Professor at the University of Washington, USA. He has pioneered the use of machine learning to fluid mechanics in areas ranging from system identification to flow control. He has an international reputation for his excellent teaching and communication skills, which have contributed to the dissemination of his research through textbooks and online lectures.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.