Mathematical Optimization and Economic Theory

· Classics in Applied Mathematics Book 39 · SIAM
Ebook
527
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Mathematical Optimization and Economic Theory provides a self-contained introduction to and survey of mathematical programming and control techniques and their applications to static and dynamic problems in economics, respectively. It is distinctive in showing the unity of the various approaches to solving problems of constrained optimization that all stem back directly or indirectly to the method of Lagrange multipliers. In the 30 years since its initial publication, there have been many more applications of these mathematical techniques in economics, as well as some advances in the mathematics of programming and control. Nevertheless, the basic techniques remain the same today as when the book was originally published. Thus, it continues to be useful not only to its original audience of advanced undergraduate and graduate students in economics, but also to mathematicians and other researchers interested in learning about the applications of the mathematics of optimization to economics. The book covers in some depth both static programming problems and dynamic control problems of optimization and the techniques of their solution. It also clearly presents many applications of these techniques to economics, and it shows why optimization is important for economics. Audience: mathematicians and other researchers who are interested in learning about the applications of mathematical optimization in economics, as well as students at the advanced undergraduate and beginning graduate level. A basic knowledge of analysis and matrix algebra is recommended. Two appendices summarize the necessary mathematics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.