Meromorphic Functions and Projective Curves

· Mathematics and Its Applications کتاب 464 · Springer Science & Business Media
ای بک
208
صفحات
درجہ بندیوں اور جائزوں کی تصدیق نہیں کی جاتی ہے  مزید جانیں

اس ای بک کے بارے میں

This book contains an exposition of the theory of meromorphic functions and linear series on a compact Riemann surface. Thus the main subject matter consists of holomorphic maps from a compact Riemann surface to complex projective space. Our emphasis is on families of meromorphic functions and holomorphic curves. Our approach is more geometric than algebraic along the lines of [Griffiths-Harrisl]. AIso, we have relied on the books [Namba] and [Arbarello-Cornalba-Griffiths-Harris] to agreat exten- nearly every result in Chapters 1 through 4 can be found in the union of these two books. Our primary motivation was to understand the totality of meromorphic functions on an algebraic curve. Though this is a classical subject and much is known about meromorphic functions, we felt that an accessible exposition was lacking in the current literature. Thus our book can be thought of as a modest effort to expose parts of the known theory of meromorphic functions and holomorphic curves with a geometric bent. We have tried to make the book self-contained and concise which meant that several major proofs not essential to further development of the theory had to be omitted. The book is targeted at the non-expert who wishes to leam enough about meromorphic functions and holomorphic curves so that helshe will be able to apply the results in hislher own research. For example, a differential geometer working in minimal surface theory may want to tind out more about the distribution pattern of poles and zeros of a meromorphic function.

اس ای بک کی درجہ بندی کریں

ہمیں اپنی رائے سے نوازیں۔

پڑھنے کی معلومات

اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔