Mathematical Optimization and Economic Theory

· Classics in Applied Mathematics Boek 39 · SIAM
E-boek
527
Pagina's
Geschikt
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Mathematical Optimization and Economic Theory provides a self-contained introduction to and survey of mathematical programming and control techniques and their applications to static and dynamic problems in economics, respectively. It is distinctive in showing the unity of the various approaches to solving problems of constrained optimization that all stem back directly or indirectly to the method of Lagrange multipliers. In the 30 years since its initial publication, there have been many more applications of these mathematical techniques in economics, as well as some advances in the mathematics of programming and control. Nevertheless, the basic techniques remain the same today as when the book was originally published. Thus, it continues to be useful not only to its original audience of advanced undergraduate and graduate students in economics, but also to mathematicians and other researchers interested in learning about the applications of the mathematics of optimization to economics. The book covers in some depth both static programming problems and dynamic control problems of optimization and the techniques of their solution. It also clearly presents many applications of these techniques to economics, and it shows why optimization is important for economics. Audience: mathematicians and other researchers who are interested in learning about the applications of mathematical optimization in economics, as well as students at the advanced undergraduate and beginning graduate level. A basic knowledge of analysis and matrix algebra is recommended. Two appendices summarize the necessary mathematics.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.